
Using Web Services on Mobile Devices to

Transparently Access .NET Remoting Objects

Bert Vanhooff
K.U. Leuven

Celestijnenlaan 200A
B, 3001, Leuven

bert.vanhooff

@cs.kuleuven.ac.be

Davy Preuveneers
K.U. Leuven

Celestijnenlaan 200A
B, 3001, Leuven

davy.preuveneers

@cs.kuleuven.ac.be

Yolande Berbers
K.U. Leuven

Celestijnenlaan 200A
B, 3001, Leuven

yolande.berbers

@cs.kuleuven.ac.be

ABSTRACT

With the growing popularity of powerful connected mobile devices (PDAs, smart phones, etc.), an opportunity to

extend existing distributed applications with mobile clients emerges. The Microsoft .NET Compact Framework

offers a development platform for mobile applications but is lacking support for .NET Remoting, which is the

.NET middleware infrastructure for inter-application communication. The current version of the .NET Compact

Framework (1.0, SP2) does support communication using web services. Unfortunately this support cannot be

used to seamlessly integrate with an existing .NET Remoting application. In this paper, we propose an approach

that leverages the present support for web services to make such integration possible. Our solution dynamically

maps back and forth between .NET Remoting and web service messages. An implementation of this solution

resulted in a set of tools and components that can readily be used to start developing mobile clients that interop-

erate with existing .NET Remoting applications.

Keywords

.NET Remoting, Web Services, .NET Compact Framework, Interoperability, Mobility

1. INTRODUCTION
.NET is a Microsoft brand name that encompasses a

whole array of technologies. A few key terms associ-

ated with this brand name are connected systems,

smart devices and web centric computing. These

terms could be categorized under the more general

denominator of distributed systems. In short, .NET

offers a complete package of tools and technologies

for developing applications, especially targeted to-

wards distributed systems.

The most important part of .NET is the .NET Frame-

work [Mic]. It consists of an execution environment

for applications and a comprehensive class library.

To support the development of distributed applica-

tions, .NET Remoting [Mcl03] was included. This is

an extensible middleware infrastructure intended to

simplify the development of distributed systems. It is

comparable to Java RMI [Sun].

The .NET Compact Framework [Wig03] is a

slimmed down version of the .NET Framework made

to run on embedded devices like PDAs or smart

phones. To take into account the resource limitations

of these devices, a dedicated execution environment

was crafted and some classes and methods of the

standard .NET class library were removed. The en-

tire namespace of the Remoting classes was removed.

As a consequence, the only high-level communication

facility present in the .NET Compact Framework is

provided in the form of a number of classes to sup-

port the invocation of web services.

Web services can be interpreted in a broad sense as

all means by which a service can be offered by one

application and used by another by leveraging Inter-

net technologies. When we refer to web services

[W3c02], [Boo03], we specifically refer to SOAP

(Simple Object Access Protocol) [Box00] over HTTP

and WSDL (Web Service Description Language)

[W3c03]. SOAP is the XML based protocol of the

messages sent by a web service, while WSDL is the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,

ISBN 7/,75832,/0,0
Copyright UNION Agency – Science Press, Plzen, Czech Republic

XML language used to describe the interface offered

by such a service.

The absence of .NET Remoting in the .NET Compact

Framework puts some serious constraints on the de-

velopment of connected smart clients when these

clients need to access remote objects on an existing

server. These constraints, which are further discussed

in the next sections, cannot be overcome by using the

standard web services support available in the .NET

Compact Framework.

In this paper, we focus on the problems that are asso-

ciated with the development of new smart clients that

need to be integrated with existing .NET Remoting

applications and we offer a solution to these prob-

lems. The rest of the paper is organized as follows.

Section 2 briefly introduces the .NET Remoting and

web services infrastructure for the purposes of formu-

lating the problem in more detail and it ends with a

list of requirements for a good solution. Section 3

gives an overview of the basic infrastructure that will

be used to solve the problem, while Section 4 ex-

plains additional mechanisms employed to support

distributed garbage collection and remote events.

Section 5 gives an overview of the implemented con-

cepts and presents the results of a small test case. In

Section 6, some related work is presented and finally,

Section 7 concludes the paper with suggestions for

future improvements.

2. DISTRIBUTED APPLICATIONS IN

.NET
As mentioned in the introduction, .NET offers .NET

Remoting and web services for developing distrib-

uted systems. This section introduces the parts of

these two technologies that will be used further in the

paper and it points out the constraints involved when

using web services instead of .NET Remoting. To

conclude this section, a set of requirements for a solu-

tion that overcomes some of these constraints is

given.

.NET Remoting

.NET Remoting simplifies the development of dis-

tributed systems by offering an extensible

infrastructure that permits objects not residing in the

same memory space (or even on the same host) to

communicate with one another in a transparent fash-

ion. This implies that every message sent to a remote

object will have to be delivered through an alternative

(non stack-based) mechanism. Therefore, each mes-

sage from a local (client) object to a remote (server)

object will be intercepted using a proxy pattern. A

message, which can for example represent a method

or constructor call, will be transformed into an IMes-

sage object by the proxy. This object contains all the

necessary information needed to reconstruct the

original call.

After passing through the proxies (at this point there

are two of them), the IMessage object is further

propagated through the .NET Remoting infrastruc-

ture. This part contains several so called sink chains,

which are series of concatenated objects, each given

the opportunity to modify the IMessage object as in a

pipe-and-filter architecture.

The sink chains provide the main extension mecha-

nism by enabling the insertion of custom sink objects.

Some sink objects are provided by default. They

include a formatter sink to serialize the IMessage data

and a transport sink to take care of the actual message

transport. Each sink chain, containing instances of

these two default sinks, is part of a channel. The

channels are the first components in the .NET Remot-

ing infrastructure that get to see incoming messages

and the last to see outgoing messages. Each channel

is named after its location and the transport mecha-

nism that it supports (e.g. TcpClientChan-

nel).

Figure 1. A limited overview of the .NET

Remoting architecture

Another set of sink chains exists besides the ones

belonging to the channel sinks. Depending on the

chosen sink chain, different categories of IMessages

will be intercepted. By choosing the server object

sink chain, only IMessages originating from a speci-

fied object will be seen. On the other hand one can

choose a channel sink chain (discussed in the para-

graph above) to intercept every message from every

object that uses that channel.

The extension mechanism, using custom sink objects,

can be used to add, for example, encryption or log-

ging facilities to the standard .NET Remoting

functionality. A more exotic extension could be one

that provides a new serialization mechanism.

A high-level overview of a limited part of the .NET

Remoting architecture can be found in Figure 1. It

shows the possible flow of an IMessage through the

sinks in a channel, when both client and server are

using .NET Remoting. An IMessage is created in the

proxy on the client and travels through the infrastruc-

ture (full lines) until it arrives at the first Custom

Channel Sink, which is a specialized version of a

message sink. Each custom sink shown in the figure

actually represents either one custom message sink or

a chain of custom message sinks (only one is shown

to save space). The message then moves further to

the Client Formatter Sink, where it is serialized. Af-

ter that, another series of Custom Channel Sinks and,

at last, the Client Transport Sink are passed. This last

sink physically sends the message to the server using

some kind of network technology. When the message

is received at the server, an equivalent chain of sinks

is passed on the server until the call to the actual ob-

ject can be executed. A response will, in turn, be

represented by an IMessage that travels in the oppo-

site direction (dotted lines).

.NET Remoting also offers solutions for considera-

tions such as object lifetime management and object

activation, but these will not be discussed here.

Web services
One of the advantages of using .NET Remoting, be-

sides its extensibility with message sinks, is its direct

support for offering web services through its infra-

structure. Remote objects can be accessed – in a

limited way – using web services, meaning that all

.NET Remoting extension mechanisms can be used

while handling a web service request. This means

that the whole client side in Figure 1 could be re-

placed by a web service client. However, some

functionality, as it is available when using a .NET

Remoting client, will be lost due to the inherent limi-

tations of standard web services [Alm01].

The main limitation in this case is that they have a

procedure oriented architecture instead of an object-

oriented architecture. The full fidelity of an object

graph at a server cannot be seen by a web service

client because object references cannot be passed.

When accessing a remote object through a web ser-

vice in .NET Remoting, the caller can only call

methods that return primitive or structured data-types.

As a consequence, he cannot get out of the scope of

the initial object because any call to a method, which

would normally return a reference to an associated

object, will only return the data contained in the asso-

ciated object and not the object reference itself.

In summary, when web services are used to access

remote objects, the objects need to be published on

well-known URLs in advance and they may not be

removed during the application’s lifetime. Other

objects that are created during the operation of the

system will not be accessible. Consequently, an ap-

plication offered as a set of web services has to have

a static object graph, at least for the objects published

as web services. More specifically an object that is

published as a web service should not be deleted as

this would result in, unanticipated, access faults. In

addition newly created objects cannot be directly

accessed by web service clients. Mind that data pre-

sent in newly created objects can be accessed

indirectly through methods from another object that is

published as a web service.

A web service is generally accessed using a proxy in

order to provide for some transparency and to keep

the programmer from having to do al lot of cumber-

some coding. There are standard tools available to

generate these proxies for a remote object. Whenever

the tools encounter a method that returns or accepts

an object, this object will be mapped to a complex

SOAP data structure. Consequently, for these prox-

ies the very notion of an object disappears.

An additional restriction is the inability to let the

server initiate communications, for example in the

case of notifying the client of an event occurrence.

Client and server are not peers as is the case with

.NET Remoting.

These limitations, along with the dynamic nature of

most object graphs, make the web service support for

.NET Remoting inadequate for developing smart cli-

ents with the same capabilities as full .NET Remoting

clients. This becomes even more important when

extending an existing .NET Remoting application that

was not originally designed for extension to web ser-

vices. The focus of this paper is on extending such

applications.

In the next subsection, we state the requirements that

need to be fulfilled by a useful solution.

Requirements
Suppose a server running .NET Remoting is exposing

some of its objects for remote access. All .NET Re-

moting clients can access these objects as if they were

local to them. If one wants to port such a client to

run on a smart device, major problems will occur

because, apart from web services (with their already

discussed shortcomings), the .NET Compact Frame-

work lacks support for accessing these remote

objects. Therefore we have to figure out an alterna-

tive approach for interacting with remote objects that

offers most of the .NET Remoting capabilities. A

concrete list of the requirements we expect a good

solution to meet is given here:

1. make the object graph on the server navigable

from the client;

2. enable the client to refer to a specific object on

the server;

3. enable method calls on remote objects (with ob-

ject references both as parameters and as return

type);

4. make interactions as transparent as possible and

hide communication details;

5. enable callbacks from the server;

6. enable fast development of new clients;

7. minimize the impact on existing applications.

These requirements need to be fulfilled by reusing

large parts of the already available infrastructure on

both the client and the server platform. The client

implementation must take into account the typical

limitations of embedded devices (small memory size,

limited processing power, etc.). This last requirement

makes the porting of the whole .NET Remoting infra-

structure to the .NET Compact Framework an

unrealistic option.

3. USING WEB SERVICES TO

ACCESS REMOTE OBJECTS
In this section we explain the approach we take to

making remote objects available to clients who run

the .NET Compact Framework. Requirements 1, 2, 3

and 4 will be addressed here. Requirement 5 will be

discussed in Section 4 while requirements 6 and 7

will be addressed throughout all the next sections and

especially in Section 5.

In the current section we will explain how URLs can

be used as object references and web services to en-

able basic communication.

Basic approach
As mentioned before, .NET Remoting can publish a

degenerated version of the public interface of a re-

mote object through a web service on a well-known

URL. We will use this capability and modify the way

of using web services to overcome their inherent limi-

tations. The envisioned idea in this paper is to make

the publication of a remote object as a web service

happen dynamically whenever a client requests an

operation which returns a remote object. Further-

more, to enable navigation to another object, the

URL that uniquely identifies that remote object will

be passed in SOAP messages. This will in fact indi-

cate the web service of that object though it can be

mapped one-to-one onto the actual object, effectively

replacing the real object reference. The idea is visu-

ally represented in Figure 2.

The figure presents a graph of three interconnected

objects, objA, objB and objC. The starting object

objA will be accessible using a web service on a well-

known URL (1). By invoking methods on this object,

one can navigate to the other objects in the graph as

follows. Whenever the client calls a method that

should return a reference to another object (which

cannot be transported using standard web services),

this object will be exposed through a web service.

The URL to reach this service will instead be re-

turned to the client as a substitute for the real object

reference. Using this URL, the client can access the

Figure 2. Dynamically exposing objects as web services.

new object (2). In this way every object in the graph

can be reached (3), effectively enabling navigability.

To keep object access as transparent as possible to

the client, each remote object will be represented by a

proxy object to hide communication details. In this

way the client thinks it is working with local objects,

which basically is what .NET Remoting is also ac-

complishing.

This approach will require adjustments on both the

client (proxies) and the server (.NET Remoting ex-

tensions). In the next section, we present an

elaboration of the general idea by using a method call

scenario.

Remote method calls
To make invocations (made by the caller on the cli-

ent) transparent, two proxies will collaborate to

represent a remote object on the client. The first

proxy, from here on called the transparent proxy will

mimic the interface of the remote object. The second

proxy referred to as the real proxy, will hide commu-

nication details. The names chosen for these proxies

were inspired by the names of the proxies in .NET

Remoting. In this subsection we refer only to the real

proxy. These two proxies reside on the client. The

server side will also need an extension to be able to

handle the client’s requests. This extension will be a

custom message sink object, inserted on top in the

server channel sink.

The real proxy can be partially generated by extract-

ing the interface of its corresponding class. However,

some modifications to this interface are necessary

when generating the proxy. These have to do with

the limitations of web services concerning the trans-

portation of object references. As mentioned in

Section 1, web services cannot transport objects (or

better: references to objects). Only simple and struc-

tured value types can be transported directly. Each

time a non-transportable type is encountered in a

method signature (the return type or a parameter

type), it will be mapped to the transportable string

type. At runtime, this string will contain an object

reference represented by a web service URL (see

Figure 4). An example of the different possibilities is

given in Table 1.

real method signature mapped method signature

int Sqrt(int a) int Sqrt(int a)

Car GetCar(int id) String GetCar(int id)

Car Clone(Car c) String Clone(String c)

Table 1. Mapping an object's interface

We use three different methods to marshal different

types. Objects that are normally marshaled by refer-

ence by the Remoting infrastructure are marshaled by

reference using the URL representation as presented

in Figure 4. Primitive types are marshaled by value

and can be transported directly using SOAP mes-

sages. Complex value types (structs without methods

in C# [Alb01]) can also be transported directly. The

last case occurs when a complex value type contains

extra methods (also structs). We chose to make a

local copy of the instance on the server and then mar-

shal it by reference. Another (maybe better) way to

achieve a correct transport of these complex types is

to transport only the data in the instance using mar-

shal by value. The data can than be loaded into a

corresponding type instance on the client that would

act as a virtual proxy. It does not communicate with

the server but does represent a server type. The latter

solution would be more complicated to implement,

while the first method can use the existing marshal by

reference facility.

If a method does not contain non-transportable types,

it can be offered in the interface unmapped and in-

voked without special intervention. On the other

hand, if a method contains mapped parameters or

return types, then the default mechanisms cannot be

used and the invocation needs special care both on

Figure 3. Invoking a method.

http://145.34.67.10:1200/[type:MyClassLib.MyClass][853b9985]

 server location object type unique object

reference

Figure 4 Our web service URL format

the client (handled in its proxies) and on the server

(using a sink object).

A case where the return type is mapped will be dis-

cussed here. Suppose one wants to invoke the

method MyClass GetMyClass() on a remote

object that we can reach via a known URL. Through

the mapping mechanism this method will be exposed

as String GetMyClass(), and will be available

as such in the proxy on the client. The sequence of

steps that will take place when calling that method is

shown in Figure 3.

When calling the method, all the details of that call

are serialized into a SOAP message and this message

is sent to the known URL (1). The method is actually

called on a web service proxy that uses the standard

class library of the .NET Compact Framework to hide

the communication details from the caller. The

SOAP message then arrives at the server and is ac-

cepted by the .NET Remoting infrastructure, where it

is automatically deserialized into an IMessage object

containing the same information. After that, it is in-

serted into the right sink chains. This also means that

our custom sink object will get a chance to process

the IMessage. In this case, the sink can just pass the

IMessage further up the chain so that the call can

eventually be invoked (2). On the other hand, if the

method contains mapped parameters, its arguments

will contain URLs that indicate other objects. These

URLs should first be replaced by the actual object

references (which are known on the server) before the

IMessage is further propagated. The result of the

method call will also be intercepted by our message

sink (3). In response it will expose the returned ob-

ject as a web service and replace the object reference

with the URL of the created web service. Also, an

extra reference to this object must be stored on the

server to prevent it from being garbage collected (see

Section 4). Whenever the returned object is a (non-

primitive) value type (struct in C#), a local copy is

stored to preserve the right semantics (see earlier in

this section).

The modified IMessage is now handed over to the

next sink object to eventually be serialized to a SOAP

message and sent back to the client (4). When the

SOAP message is received, it is deserialized. The

returned URL is then given to the proxy, which will

give it back to the caller — which will in practice be

the transparent proxy (see next subsection). The

caller can in turn start invoking methods on the re-

turned ‘object’ represented by the new web service.

This will happen by instantiating a new proxy for the

corresponding type, and initializing it with the given

URL.

The mechanism described above implies that proxies

are available a priori for each type used. This does

not introduce any limitation in our case. Proxy gen-

eration at design time will actually boost performance

by taking away the processing cost of generating

proxies at run time. While it does enable basic com-

munications, the use of the real proxy directly does

not provide for much transparency. The caller does

not see the real method signatures and has to manipu-

late URLs instead of real object references. In the

next subsection, the transparent proxy is added to

solve this problem.

Providing a transparent client interface
To make the approach described above more trans-

parent to the caller on the client, an extra level of

indirection is introduced by adding a transparent

proxy that interacts with the real proxy. The interface

of the transparent proxy will mimic the object on the

Figure 5. Using two proxies on the client to provide maximum transparency.

server that it represents, effectively providing trans-

parency. Whenever a method invoked on a

transparent proxy contains instances of other trans-

parent proxies in its arguments, the transparent proxy

will translate these arguments into their correspond-

ing URLs and forward the call to the real proxy. The

reverse translation is done with returned values. The

real proxy in turn hides the rest of the communication

details as discussed in the beginning of this section.

Figure 5 shows a general model of the structure.

The scenario presented in Figure 5 starts when the

transparent proxy objA* (indicating that it mimics the

interface of the remote object A) receives a response

from the real proxy after calling its GetObjectB()

method. This is where the scenario presented in

Figure 3 ended by returning an URL to the caller,

which is represented by objA* in the current scenario.

The returned value is the URL to the web service of

object B. The rest of the scenario goes as follows:

1. Upon receiving a URL, the transparent proxy

needs to create the necessary proxy objects that will

enable the client to transparently work with the new

object’s web service. It therefore sends a cre-

ate() message to the objectActivator.

2. This objectActivator will check its cache to

see if it already contains a transparent proxy that re-

fers to the given URL. If none is found, it will create

a new one and add it to the cache.

3. A real proxy to directly interact with the web ser-

vice will also be created.

4. Eventually the newly created transparent proxy

objB* is given back to objA*, whichever object

invoked its method caller.

4. EXTENSIONS FOR LIFETIME

MANAGEMENT AND EVENTS
The previous section explained how references to

remote objects can be obtained and how method calls

can be carried out in a transparent fashion. However,

there should also be a mechanism to manage the life-

time of remote objects that are accessed in this way.

The server needs to know which objects are still ref-

erenced in order to carry out meaningful garbage

collection. Requirement 5 also states that events on

the server should be capable of being propagated to

the clients. The mechanisms for addressing these two

issues are presented in this section.

Distributed lifetime management
Distributed garbage collection is all about keeping

track of remote references to an object and letting

them play a role in the life cycle of the object. The

goal is to prevent remote objects either from living

forever or from being deleted when they are still in

use. Without further precautions being taken, the

first case would apply to the approach explained so

far. Whenever a client gets a reference to an object

on the server, the object’s local life cycle (the life

cycle of its proxy on the client) will not be known to

the server, which will result in an object that lives

eternally. Note that we will not address the inverse

problem of managing the life cycle of objects on the

client that are referenced by the server because until

now this has not been capable of happening. This

client/server approach rules out the problem of deal-

ing with circular references, which can only occur if

an object acts as both client and server.

A method for solving this problem of having remote

objects that live eternally is to just let the garbage

collector on the client do its work on the proxies and,

whenever a transparent proxy is destructed, to notify

the server of this event. This technique will work

well in our specific case. A survey of more elaborate

techniques for distributed garbage collection is given

in [Pla95]. [Vei03] presents a distributed garbage

collector that improves the current mechanisms used

in .NET. The garbage collector is implemented in

Rotor [Mic2] using the sink based extension mecha-

nism. Our basic approach is illustrated in Figure 6.

1. A transparent proxy on the client is not referenced

anymore and is destroyed by the local garbage collec-

tor.

2. This results in the invocation of the destructor of

that proxy. The transparent proxy will react to this by

invoking the EndLife() method on a special gar-

bage collector proxy (GCProxy), giving its URL as

argument.

Figure 6. Simple distributed garbage collection.

3. The message is received at the server (using the

mechanisms described earlier), where a special gar-

bage collecting object (WSGC) will remove a ref-

erence to the corresponding remote object. Hereafter

the garbage collector of the server can proceed with

its tasks. Because the reference count of the object

on the server is now lowered, it could possibly be

removed in the next run of the garbage collector.

Of course this method does not take into account the

unexpected connectivity loss of a client. The unex-

pected loss of a client will now result in the eternal

life of its referenced objects because it cannot notify

the server of object destruction. Since wireless ac-

cess is common with portable devices and can suffer

connectivity losses regularly, a complementary solu-

tion has to be added.

The easiest way to prevent the creation of indestructi-

ble objects is to implement a simple leasing system

where the client announces its presence to the server

at regular intervals. When the server does not get any

life signs for a specified amount of time it can delete

all the references associated with that client.

So far, the requirement 5 is still missing. It is not yet

possible for the server to initiate contact with a client,

for example to send a notification, as would have

been done in an event based application. A solution

for handling such events will be proposed in the

following section.

Remote events
Using the given descriptions, invocation from client

to server becomes possible. What is lacking here is a

mechanism for notifying clients of events generated

by a remote object. This will require the client to act

as a (web)server. An easier solution would be for the

client to use some sort of polling mechanism, but this

will not be considered here since it is not a real event-

ing system. Up to this point the solutions have been

given in a more or less platform independent manner

in the sense that they could be implemented either on

a .NET or on a Java platform (using other mecha-

nisms at the server). The way events are supported

will be specifically targeted to .NET, using events

and delegates.

In C# (probably the most popular .NET language) the

keywords event and delegate are provided. A

(multicast) delegate is a special object that can con-

tain pointers to methods in other objects, given that

these methods have the same signature as the delegate

declaration. These methods can consequently be

called all together by triggering the delegate. The

event keyword is actually an access modifier on a

delegate to prevent external triggering of the dele-

gate. Other objects can subscribe to an event by

instantiating the delegate with one of their methods

and adding it using the += operator. How these

events and delegates are integrated into the previous

parts is discussed below (see Figure 7).

In the same way that the transparent proxy mimics the

interface of a remote object, it also mimics the events

published by that object. To subscribe to an event

published by the transparent proxy objA* , one calls

the subscribe() method with an instance of the

appropriate delegate as its argument (1). The stan-

dard += mechanism to subscribe cannot be used be-

cause it cannot be overridden. As a consequence, this

part cannot be made completely transparent. Next,

the transparent proxy objA* passes the request to

Figure 7. Distributed events.

the client’s eventHandler object (2). The even-

tHandler is a transparent proxy that does the

necessary translations of object references to URLs.

The request is then passed to the real proxy (3) be-

longing to the eventHandler object, which sends

the message to the server. A delegate is identified by

an ID number in this stage, so the server can find the

right delegate. When the message arrives at the

server, the custom sink object (not shown in Figure 7)

routes the request to the eventListener object,

which subscribes itself to the event in place of the

transparent proxy (4). When the event occurs (5), the

eventListener is notified. The eventLis-

tener then calls its proxy to translate the event

arguments and send them to the eventHandler on

the client. This is accomplished by running a simple

web server [Pra03] on the client and publishing the

eventHandler’s interface on a well-known URL.

The eventHandler can, if necessary, call the cor-

responding delegate on the client to raise the event

locally (6). Thus it will seem that the event has oc-

curred locally.

5. IMPLEMENTATION OF THE

MODULES TO SUPPORT THE PRO-

POSED CONCEPTS
An implementation of the basic ideas was carried out

to prove the feasibility of the proposed concepts. The

results of the implementation can roughly be divided

into two parts: a C# code generator for the client side

proxies and an extension for the .NET Remoting in-

frastructure in the form of a sink object and

supporting objects.

The code generator was implemented in two steps.

First a WSDL generator was developed. It takes one

or more existing classes (residing in compiled assem-

blies) as input and generates corresponding WSDL

files as output. It also takes care of the mapping of

non-transportable types. Next, this WSDL is auto-

matically transformed into real proxies using standard

provided classes in the .NET Framework class li-

brary. In a second phase a code generator for the

transparent proxies was implemented. This was ac-

complished using the excellent support for dynamic

code generation and compilation of the .NET class

library.

All the functionality mentioned was then integrated

into one tool which enables one-click generation of

all the needed proxies. The functionality needed by

all proxies was split off into a separate common li-

brary module that has to be included with each client.

The generator tool can be set to output a compiled

assembly of proxies, ready to be used. By importing

this assembly into a project (in Visual Studio.NET),

the programmer gets a view of all the classes as he

would expect them on the server, thus fulfilling re-

quirements 6 and 7.

Splitting the code generation into a few steps facili-

tates the adaption of the application to generate code

for other (non-.NET) programming languages. Espe-

cially the generation of the intermediate WSDL files

opens up the possibility of using existing tools to

generate real proxies in other languages without hav-

ing to re-code the entire logic.

Extending the .NET Remoting behavior did not prove

to be as easy as expected. There turned out to be

many more subtleties in choosing the right extension

mechanism than one would expect. The .NET Re-

moting introduction in this paper only touches on the

many extension possibilities. A suitable extension

mechanism was finally found: a custom channel sink

inserted above the predefined server formatter sink.

This component is responsible for mapping the run-

time arguments and return values back and forth to

URLs. It therefore shares some functionality with the

WSDL generator.

Our channel sink undertakes four steps in intercepting

messages:

1. Check the input message. Only accept IMethod-

Messages. We do not treat constructor messages for

example.

2. Adapt the incoming message:

•••• Search for references in the parameter list.

•••• Skip simple messages (containing only primi-

tive types).

•••• Convert the references into real object refer-

ences by searching the server’s hash table.

Create a new writable IMessage, copy the data

from the original message and replace the refer-

ences.

3. Forward the newly created message to the next

sink in the chain.

4. Adapt the return message:

•••• If the return type is primitive, the instance is

marshaled by value and directly send back.

•••• If the return type has to be marshaled by refer-

ence, a unique ID is generated to be able to

construct a valid URL. Next, the instance is

published as a web service on this URL and the

mapping between URL and real object refer-

ence is saved in a hash map, which also places

an extra reference to the object on the server for

use in the distributed garbage collection. Fi-

nally the return message is changed with the

marshaled return value.

•••• In case of a complex value type with methods, a

local copy of the instance is first created and

then, the mechanism of the former bullet is fol-

lowed.

Inserting a channel sink in the server formatter sink

chain can be accomplished by adding a few lines of

code to the server application or even simply by add-

ing some configuration information to the

applications standard configuration file. This shows

the low impact on the server, again supporting re-

quirements 6 and 7.

The implementation was tested against an existing

application of a company active in the warehouse

automation sector. This automation is accomplished

using automated guided vehicles (AGVs). To enable

rapid application deployment they developed an inte-

grated designer suite offering the basic building

blocks of a warehouse application. The suite is fully

written using the .NET Framework. It includes ge-

neric building blocks for logging, scheduling

transports and user interfacing. The user interfacing

building blocks communicate with the other parts

using .NET Remoting.

Our test case was a smart client application that acted

as a simplified user interface to the warehouse appli-

cation. Two objects were relevant in this application,

namely Project and Agv. The operations that

were used to do some testing are summarized in

Table 2. The generated proxies for the two objects

were compiled into an assembly of 20 KiB1. The

client’s common library requires 16 KiB. The meas-

ured durations for operation executions are presented

in Table 3 below. The table contains measurements

using our solution and using the Remoting-Remoting

case (using the HttpChannel).

Operation(s) functionality

string GetName() Gets the name of the project

agv[] GetAgvs()
Gets an array of 4 AGVs from

the project

SetSpeed(int s)
int GetSpeed()

Sets the speed of one AGV and

retrieves it thereafter

Table 2. Test operations

Operation(s) Time(ws-rem) Time(rem-rem)

string GetName() 25 ms 455 ms

agv[] GetAgvs() 25 ms 8 ms

SetSpeed(int s)
int GetSpeed()

250 ms 24 ms

Table 3. Performance measurements

From these results we can conclude that the perform-

ance penalties are acceptable. The large delay of the

GetName() operation, in the Remoting-Remoting

case is caused by the dynamic generation of proxies.

This type of delay always occurs when invoking the

first method on a remote object and has nothing to do

with the type of its return value/parameters. This

1 KiB is short for kibibyte, where kibi=210 (an IEC prefix).

KB is short for kilobyte, where kilo=103 (an SI prefix).

supports our early decision not to port the complete

.NET Remoting infrastructure (see Subsection 2,

Requirements) to the .NET Compact Framework.

6. Related work
The consuming of web services on mobile devices

has only just recently been emerging due to the grow-

ing availability offering of Wifi-, or Bluetooth-

enabled PDAs and smart phones. These web services

have been mainly limited to simple services, such as

obtaining weather or news information.

To enable remote events, as discussed in Section 4, a

mobile web server will be needed. A proposal to

implement such a server, keeping in mind the re-

source constraints, is given in [Pra03]. To lower the

device’s requirements, some constraints were intro-

duced. One of them is to allow only simple SOAP

types. This would not be a problem in integrating it

with our solution, because we do not use complex

SOAP types.

In [Cam00], techniques for optimizing the perform-

ance of Java RMI are proposed. The optimizations

are made with wireless communication and resource-

constrained devices in mind, making Java RMI more

suitable for mobile devices.

An approach to optimizing the use of web services on

resource-constrained devices by applying specialized

code generation techniques is presented in [Eng].

Also, some runtime optimizations are implemented

using the gSOAP environment, which is portable to

most platforms including Pocket PC (which can run

the .NET Compact Framework).

Middsol [Mid] provides standard CORBA inter-

process communication for the .NET Compact

Framework. This support is provided in the form of

an assembly (520 KiB) that needs to be included on

the mobile client. While being very useful, this solu-

tion does not allow one to directly connect to .NET

Remoting objects.

An approach that enables communication between the

.NET (Compact) Framework and long-lived embed-

ded devices is proposed in [She04]. It handles about

isolating applications from the underlying wire proto-

col by using application-level bridges. This is similar

to what we are accomplishing by using independent

proxies on the client.

The approach in [Vei04] enables the .NET Compact

Framework to communicate with a .NET Remoting

infrastructure using bridges based on web services.

The main focus of the paper is on object replication

on mobile devices to enable connectionless operation

and boost performance. As in our approach, auto-

matic proxy generators are provided.

7. CONCLUSION
To enable the introduction of smart clients (PDAs,

smart phones) into existing distributed applications,

we proposed an approach that dynamically maps web

services to .NET Remoting. This approach enables

the quick development of applications that interact

with remote objects, solely using the .NET Compact

Framework. By presenting a transparent interface

using proxies, the programmer does not have to

worry about any communication details. The solution

is fully generic so it can be used for any existing ap-

plication without specific modifications.

Using our code generation tool, proxies are generated

fully automatically simply by selecting the needed

classes in an assembly. Thus a complete representa-

tion of the needed server-objects becomes available

at the client in the form of proxies that mimic these

objects. The impact on the server is minimized by

the implementation of all necessary logic using just

one sink object. This sink can be inserted into the

.NET Remoting infrastructure by adding as little as

three lines of code or even simply by modifying the

application configuration file, without influencing the

rest of the application. In addition the portability to

other client platforms should be easy. It would only

require an extension of the C# code generator for the

transparent proxies. The server side requires no

modifications.

To refine the solution, two paths could be further

pursued. First, the implemented modules could be

elaborated by including an implementation of the

proposed garbage collection and eventing concepts.

Secondly, we could search for good solutions to han-

dle the more efficient communication of frequently

used classes such as collections and, more in general,

all classes common to the class libraries of both client

and server.

8. REFERENCES
[Alb01] B. Albahari, P. Drayton, and B. Merrill, C#

Essentials. O’Reilly, 2001.

[Alm01] J. P. Almeida, L. Ferreira, and M. J. van Sinderen,

“Web services and seamless interoperability”, 2001,

[Online], Available: http://wwwhome.cs.utwente.nl/~pires/

publications/eoows2003.pdf

[Boo03] D. Booth, H. Haas, F. McCabe, E. Newcomer, M.

Champion, C. Ferris, and D. Orchard, “Web services

architecture,” 2003. [Online]. Available:

http://www.w3c.org/TR/2003/WD-ws-arch-20030808/

[Box00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,

N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,

“Simple object access protocol (soap) 1.1,” 2000. [Online].

Available: http://www.w3.org/TR/2000/NOTESOAP

20000508/

[Cam00] S. Campadello, O. Koskimies, K. Raatikainen,

and H. Helin, “Wireless java rmi.”

[Eng] R. van Engelen, “Code generation techniques for

developing light-weight xml web services for embedded

devices.”, [Online], Available:

http://websrv.cs.fsu.edu/~engelen/SACpaper.pdf

[Mcl03] S. McLean, J. Naftel, and K. Williams, Microsoft

.NET REMOTING. Microsoft Press, 2003.

[Mic] “Microsoft .net framework development center.”

[Online]. Available:

http://msdn.microsoft.com/netframework/

[Mic2] “Microsoft Rotor - Shared Source Common

Language Infrastructure”, [Online], Available:

http://msdn.microsoft.com/net/sscli

[Mid] MiddSol, “Middleware solution for integrating .net,

j2ee and corba.”, [Online], Available:

http://www.middsol.com/MinCor/index.html

[Pla95] D. Plainfossé and M. Shapiro, “A survey of

distributed garbage collection techniques.”, 1995, [Online],

Available: http://mega.ist.utl.pt/~ic-arge/arge-96-

97/artigos/

[Pra03] D. Pratistha, N. Nicoloudis and Simon Cuce, “A

micro-services framework on mobile devices,” 2003.

[Online]. Available: http://plato.csse.monash.edu.au/

MobileWebServer/pervasive3.pdf

[She04] R. Shenoy and K. Moore, “Sustaining the

integration of long-lived systems with .NET”, 2004,

[Online]. Available:

http://www.hpl.hp.com/techreports/2004/ HPL-2004-

133.pdf

[Sun] “Java rmi.” [Online]. Available:

http://java.sun.com/products/jdk/rmi/

[Vei03] L. Veiga and P.Ferreira, “Complete distributed

garbage collection: an experience with Rotor”, [Online],

Available:

http://csce.unl.edu/~witty/sp2004/csce496/repository/uploa

d/10.pdf

[Vei04] L. Veiga, N. Santos, R. Lebre and P.Ferreira,

“Loosly-Coupled, Mobile Replication of Objects with

Transactions”, 2004, [Online], Available:

http://www.gsd.inesc-id.pt/~pjpf/icapds-2004.pdf

[W3c02] “W3c web services activity.” [Online]. Available:

http://www.w3c.org/2002/ws

[W3c03] R. Chinnici, M. Gudgin, J.-J. Moreau, and S.

Weerawarana, “Web services description language (wsdl)

version 1.2,” 2003. [Online]. Available:

http://www.w3.org/TR/2003/WD-wsdl12-20030303/

[Wig03] A. Wigley and S. Wheelwright, Microsoft .NET

Compact Framework (Core Reference). Microsoft Press,

2003

